Abstract

Data stability, write ability and leakage power are major concerns in submicron static random access memory (SRAM) cell design. This paper presents an 11T SRAM cell with differential write and single-ended read. Proposed cell offers improved write ability by interrupting its ground connection during write operation. Separate read buffer provides disturb-free read operation. Characteristics are obtained from HSPICE simulation using 32[Formula: see text]nm high-performance predictive technology model. Simulation results show that the proposed cell achieves 4.5[Formula: see text] and 1.06[Formula: see text] higher read static noise margin (RSNM) as compared to conventional 6T (C6T) and PNN-based 10T cells, respectively, at 0.4[Formula: see text]V. Write static noise margin (WSNM) of the proposed design is 1.65[Formula: see text], 1.71[Formula: see text] and 1.77[Formula: see text] larger as compared to those of C6T, PPN-based 10T and PNN-based 10T cells, respectively, at 0.4V. Write “1” delay of the proposed cell is 0.108[Formula: see text] and 0.81[Formula: see text] as those of PPN10T and PNN10T cells, respectively. Proposed circuit consumes 1.40[Formula: see text] lesser read power as compared to PPN10T cell at 0.4[Formula: see text]V. Leakage power of the proposed cell is 0.35[Formula: see text] of C6T cell at 0.4[Formula: see text]V. Proposed 11T cell occupies 1.65[Formula: see text] larger area as compared to that of conventional 6T.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call