Abstract

The design and simulation of a battery charger is presented, for medical applications using three-state mode charge, containing a Buck converter and a lead-acid battery. Implementing Proportional Integral (PI) controllers, to modify the duty cycle of the Buck converter, in such a way that the battery is subjected to the 3 states during the charging process, the PI controller reference changes for each of the 3 states. In this way the battery is subjected to the 3 states with a single PI controller. In order to predict the current and voltage values ​​to which it would be subjected in the real system in a charging process with this algorithm, it was possible to obtain the battery charge graphs, which describe all the voltage and current values. that the actual battery will undergo in a 3-state charge. Concluding that the charging current is maintained at adequate values, however there is a possibility that in state 2, the voltage exceeds the tolerated overvoltage value, so it is recommended to reduce the voltage reference in state 2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call