Abstract

This paper presents a 2-D analytic potential model for double-gate (DG) tunnel field effect transistors (TFETs) by solving the 2-D Poisson's equation. From the potential profile, the electric field is derived and then the drain current expression is extracted by analytically integrating the band-to-band tunneling generation rate over the tunneling region. The model well predicts the potential, subthreshold swing (SS), and transfer and output characteristics of DG TFETs. We analyze the dependence of the tunneling current on the device parameters by varying the gate oxide dielectric constant, gate oxide thickness, body thickness, channel length and channel material and also demonstrate its agreement with TCAD simulation results. The SS which describes the switching behavior of TFETs, is derived from the current expression. The comparisons show that the SS of our model well coincides with that of simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.