Abstract
High-resolution, moderate-speed, calibration-free analog-to-digital converters (ADCs) are becoming increasingly difficult to design in low-voltage nanometer-scale CMOS processes. We propose an ADC architecture based on a resetting ΣΔ modulator that achieves high resolution, despite poor component matching and poor analog transistor performance. A prototype design pipelines a second-order resetting ΣΔ modulator and a 10 b cyclic ADC. The device achieves 14 b resolution and samples as a Nyquist converter at 23 MS/s. This calibration-free ADC achieves no missing codes, 87 dB SFDR and 11.7 b ENOB. The ADC is fabricated in 0.18 μm CMOS and occupies a core area of 0.5 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> . It consumes 48 mW from a 2 V supply.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems I: Regular Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.