Abstract
The present work deals with 12-bit Nyquist current-steering CMOS digital-to-analog converter (DAC) which is an essential part in baseband section of wireless transmitter circuits. Using oversampling ratio (OSR) for the proposed DAC leads to avoid use of an active analog reconstruction filter. The optimum segmentation (75%) has been used to get the best DNL and reduce glitch energy. This segmentation ratio guarantees the monotonicity. Higher performance is achieved using a new 3-D thermometer decoding method which reduces the area, power consumption and the number of control signals of the digital section. Using two digital channels in parallel, helps reach 1-GSample/s frequency. Simulation results show that the spurious- free-dynamic-range (SFDR) in Nyquist rate is better than 64 dB for sampling frequency up to 1-GSample/s. The analog voltage supply is 3.3 V while the digital part of the chip operates with only 2.4 V. Total power consumption in Nyquist rate measurement is 144.9 mW. The chip has been processed in a standard 0.35 µm CMOS technology. Active area of chip is 1.37 mm2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.