Abstract
The vapor transport growth of silicon carbide crystals involves induction heating, electromagnetic field, radiative and conductive heat transfer, sublimation and condensation, chemical reaction, stoichiometry, mass transport, thermal stresses, as well as defect and micropipe generation and propagation. The irregular geometry, complicated boundary conditions, and lack of information on thermophysical properties at high temperatures make this process very difficult to understand, model, and control. As defects and micropipes in silicon carbide (SiC) crystals are directly related to transport phenomena, it is critical to develop better understanding of these phenomena to grow crystals of higher quality and larger size and to examine the effects of various parameters individually and collectively. Modeling and simulation has been widely used in industry to optimize the system geometry and growth processes. The components of the growth system can be redesigned in order to grow crystals with low thermal stresses. Industry has used the model to design the furnace for growing 50–100 mm diameter SiC crystals. It is observed that a convex shape of interface can ensure an outward growth to expand a small size seed into a large diameter crystal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.