Abstract

Electronic boards are composed of three sub-elements: a printed circuit board (PCB), electronic components and solder joints that enable mechanical and electrical interconnections between the components and the board. Modeling can be used to analyze and predict aging and fatigue phenomena in solder interconnects caused by temperature cycles. In this chapter, a probabilist study of the stress in a solder interconnect is presented. This approach takes into account uncertainties resulting from the random nature of temperature fluctuations, the geometric dimensions of an electronic assembly and the properties of materials. The assembly of a mechatronic system may fail if these uncertainties are ignored. Probabilistic methods are used to improve the ability of the design to resist stresses and to estimate the impact of parameter uncertainties regarding structure robustness. The volume of the solder interconnect is optimized to improve its resistance to thermomecanical stresses caused by thermal cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call