Abstract

Microtubules (MTs) gliding on the kinesin-coated surface in vitro have a good feasibility for development of micro-scale transport systems. The key requirements in the development of the system include an image analysis to detect and recognize gliding MTs. In this study, we present an algorithm for detecting the position of the leading tips of gliding MTs. The algorithm operates on binarized fluorescent images of MTs and extracts the tips of MTs with a kernel. For verification, the algorithm was applied to a sample segment, and the distance between extracted coordinates with the algorithm and given coordinates were referred to an error. As a result, the algorithm caused the error, in which the measurement length was shorter than the actual length by only a half of the sample width. By applying the algorithm to the gliding MTs, the tips were well extracted following the trajectories of gliding MTs. The present algorithm for the tip-tracking may be useful for constructing nano-scale transport systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.