Abstract

The application of wearable sensors in domains related to healthcare systems, human motion detection, robotics, and human–machine interactions has attracted significant attention. Because these applications require stretchable, flexible, and non-invasive materials, polymer composites are now at the forefront of research aimed at preparing innovative wearable sensors. Three-dimensional (3D) printing techniques can be used to obtain highly customised and scalable polymer composites to fabricate wearable sensors, which is a challenging task for conventional fabrication techniques. This review provides insights into the prospects of commonly used conductive nanomaterials and 3D printing techniques to prepare wearable devices. Subsequently, the research progress, sensing mechanisms, and performance of 3D-printed wearable sensors, such as strain, pressure, temperature, and humidity sensors, are discussed. In addition, novel 3D-printed multifunctional sensors, such as multi-directional, multi-modal, self-healable, self-powered, in situ printed, and ultrasonic sensors, are highlighted. The challenges and future trends for further research development are clarified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call