Abstract
Wearable (bio)sensors driven through emerging three-dimensional (3D) printing technologies are currently considered the next-generation tools for various healthcare applications due to their exciting characteristics such as high stretchability, super flexibility, low cost, ultra-thinness, and lightweight. In this context, 3D printing, an emerging advanced additive manufacturing technology has revolutionized the concept of free form construction and end-user customization owing to its multifarious peculiarities that involve ease of operation, on-demand and rapid fabrication, precise and controlled deposition, as well as versatility with various soft functional materials. The customized functional structures with controllable geometry and design can be autonomously printed on the desired surfaces using the 3D printing technologies excluding the prerequisite amenities of microfabrication technologies. To accomplish this, both academics and industry experts have worked persistently to fabricate smaller, faster, and more efficient wearable devices using readily available 3D printing technologies. The contribution of 3D printing technologies in developing novel 3D structures for wearable applications using printable soft and functional materials is highlighted in this article. Moreover, the process of 3D printing along with major techniques, namely vat photopolymerization, material jetting, and material extrusion are summarized. Besides this, a number of 3D printed (bio)sensing platforms such as glucose sensors, lactate sensors, sweat sensors, strain sensors, tactile sensors, wearable oximeters, smart bandages, artificial skin, tattoo sensors, electroencephalography (EEG), electrocardiography (ECG) sensors, etc., are discussed in terms of design specifications and fabrication strategies of devices obtained via 3D printing techniques. Pictorial representation of 3D printed wearable (bio)sensors indicating numerous 3D printing materials (composite filaments, elastomers, functional inks, and hydrogels); techniques (vat photopolymerization, material jetting, and material extrusion), and different applications (glucose biosensing, strain sensing, tactile sensing, sweat sensing, ECG/EEG sensing, etc.) • Explores the recent advances in 3D printing technologies for wearable (bio)sensors. • Soft materials compatible with 3D printing technologies are discussed. • Process of 3D printing and techniques namely vat photopolymerization, material jetting, material extrusion are highlighted. • Potential 3D printed wearable (bio)sensors are reviewed in terms of design specifications and fabrication strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.