Abstract

Flexible electrochemical energy storage devices have attracted extensive attention as promising power sources for the ever-growing field of flexible and wearable electronic products. However, the rational design of a novel electrode structure with a good flexibility, high capacity, fast charge–discharge rate and long cycling lifetimes remains a long-standing challenge for developing next-generation flexible energy-storage materials. Herein, we develop a facile and general approach to three-dimensional (3D) interconnected porous nitrogen-doped graphene foam with encapsulated Ge quantum dot/nitrogen-doped graphene yolk-shell nano architecture for high specific reversible capacity (1,220 mAh g−1), long cycling capability (over 96% reversible capacity retention from the second to 1,000 cycles) and ultra-high rate performance (over 800 mAh g−1 at 40 C). This work paves a way to develop the 3D interconnected graphene-based high-capacity electrode material systems, particularly those that suffer from huge volume expansion, for the future development of high-performance flexible energy storage systems.

Highlights

  • The ever-growing demands in future flexible electronics, such as wearable devices, portable electronic devices and implantable biomedical products, have aroused worldwide research interests in the development of flexible rechargeable batteries with high-power density and high energy density over a long lifespan[1,2,3]

  • Chemical vapor deposition (CVD) is a promising method to synthesize graphene with higher conductivity than other chemical synthesis, which would facilitate the fast electron and ion transport in advanced energy storage system

  • It is noted that the key design of the yolk-shell nanoarchitecture in improving electrochemical performance lies in the appropriate void space, which would be expand/contract freely upon lithium alloying and leaching without damaging the

Read more

Summary

Introduction

The ever-growing demands in future flexible electronics, such as wearable devices, portable electronic devices and implantable biomedical products, have aroused worldwide research interests in the development of flexible rechargeable batteries with high-power density and high energy density over a long lifespan[1,2,3]. We show a facile and general approach to a 3D interconnected porous nitrogen-doped graphene foam (NGF) with encapsulated Ge quantum dot@nitrogen-doped graphene yolk-shell nanoarchitecture (Ge-QD@ NG/NGF) for high specific reversible capacity (1,220 mAh g À 1), ultra-high rate capability (over 800 mAh g À 1 at 40 C) and long cycling capability (over 98% specific reversible capacity retention from the second to 1,000 cycles) in the form of flexible LIBs. The unique advantage of 3D Ge-QD@NG/NGF yolk-shell nanoarchitecture provide internal void space to alleviate the huge volumetric expansion of Ge during lithiation, and provide numerous open channels for the easy access of electrolyte, good flexibility and great retain in the high electrical conductivity of whole electrode, facilitating the fast lithium ion and electron diffusion. The unique 3D interconnected graphene-based electrode structure reported in this work can have significant indications in developing a new generation high-performance flexible LIBs with great promises to promote the real-life applications in flexible energy-storage devices

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.