Abstract

Printed flexible electronic devices can be portable, lightweight, bendable, and even stretchable, wearable, or implantable and therefore have great potential for applications such as roll-up displays, smart mobile devices, wearable electronics, implantable biosensors, and so on. To realize fully printed flexible devices with matchable or integrable power sources, printed flexible electrochemical energy storage units with high energy storage and power density have been investigated. Many works are dedicated to exploring suitable and effective electrode/electrolyte materials as well as more preferable cell configuration and structural designs. As a result, exciting progress has been achieved in developing high-performance printed flexible electrochemical energy storage devices, mainly including lithium-ion and zinc-based batteries, and supercapacitors. In addition, printing nanomaterials have made significant advances for energy electrochemical storage applications. With these advancements, future flexible power sources that combine both outstanding electrochemical and mechanical performance will boost the development and commercialization of next-generation flexible electronics. This chapter will briefly review the advances of printed flexible electrochemical energy storage devices, including evolution of electrochemical energy storage, working principles of battery and supercapacitor, as well as various printed flexible batteries and supercapacitors, covering printable organic, inorganic materials and nanomaterials, printed components, integration processes, and suitable applications.KeywordsElectrochemical energy storageLithium-ion batteryZinc-based batterySupercapacitorsNanomaterialShape-memorySelf-healing materialChemical reactive sinteringAll-printed-batteryMetal-organic framework

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call