Abstract
X-ray fluorescence computed tomography (XFCT) is a stimulated emission tomography modality that maps the three-dimensional (3D) distribution of elements. Generally, XFCT is done by scanning a pencil-beam across the sample. This paper presents a feasibility study of full-field XFCT (FF-XFCT) for 3D elemental imaging. The FF-XFCT consists of a pinhole collimator and X-ray imaging detector with no energy resolution. A prototype imaging system was set up at the Shanghai Synchrotron Radiation Facility (SSRF) for imaging the phantom. The first FF-XFCT experimental results are presented. The cadmium (Cd) and iodine (I) distributions were reconstructed. The results demonstrate FF-XFCT is fit for 3D elemental imaging and the sensitivity of FF-XFCT is higher than a conventional CT system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.