Abstract

The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (HMGCR) gene encodes rate-limiting enzyme in cholesterol biosynthesis, which is related to cell proliferation and mitochondrial function. The present study was designed to explore the expression of HMGCR in murine cochlear hair cells and HEI-OC1 cells and the possible mechanisms underpinning the actions of HMGCR in cisplatin-induced ototoxicity, with special attention given to p38 mitogen-activated protein kinase (MAPK) activities in vitro. The expressions of HMGCR, p-p38, cleaved caspase-3 and LC3B was measured by immunofluorescence and western blot. JC-1 staining and MitoSOX Red were used to detect mitochondria membrane potential (MMP) and reactive oxygen species (ROS) levels respectively. The apoptosis of auditory cells was assessed by TUNEL staining and flow cytometry. Protein levels of bcl2/bax and beclin1 were examined by western blot. We found that HMGCR was widely expressed in the auditory cells, of both neonatal mice and 2-month-old mice, in cytoplasm, nucleus and stereocilia. Moreover, 30μM cisplatin elicited the formation of ROS, which, in turn, led to HMGCR reduction, activating p38 kinase-related apoptosis and autophagy in auditory cells. Meanwhile, co-treatment with ROS scavenger at a concentration of 2mM, N-acetyl-L-cysteine (NAC), could alleviate the aforementioned changes. In addition, HMGCR silencing resulted in higher p38 MAPK-mediated apoptosis and autophagy under cisplatin injury. Taken together, we demonstrate that, for the first time, that HMGCR is expressed in the cochlear. Furthermore, HMGCR exerts protective benefit on auditory cells against cisplatin-mediated injury stimulated by ROS, culminating in regulation of p38 MAPK-dependent apoptosis and autophagy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call