Abstract

In this work, 2D ferromagnetic M3GeTe2 (MGT, M = Ni/Fe) nanosheets with rich atomic Te vacancies (2D-MGTv) are demonstrated as efficient OER electrocatalyst via a general mechanical exfoliation strategy. X-ray absorption spectra (XAS) and scanning transmission electron microscope (STEM) results validate the dominant presence of metal-O moieties and rich Te vacancies, respectively. The formed Te vacancies are active for the adsorption of OH* and O* species while the metal-O moieties promote the O* and OOH* adsorption, contributing synergistically to the faster oxygen evolution kinetics. Consequently, 2D-Ni3GeTe2v exhibits superior OER activity with only 370mV overpotential to reach the current density of 100mA cm-2 and turnover frequency (TOF) value of 101.6 s-1 at the overpotential of 200mV in alkaline media. Furthermore, a 2D-Ni3GeTe2v-based anion-exchange membrane (AEM) water electrolysis cell (1 cm2) delivers a current density of 1.02 and 1.32 A cm-2 at the voltage of 3V feeding with 0.1 and 1m KOH solution, respectively. The demonstrated metal-O coordination with abundant atomic vacancies for ferromagnetic M3GeTe2 and the easily extended preparation strategy would enlighten the rational design and fabrication of other ferromagnetic materials for wider electrocatalytic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.