Abstract

AbstractThis study explores a symmetric configuration approach in anion exchange membrane (AEM) water electrolysis, focusing on overcoming adaptability challenges in dynamic conditions. Here, a rapid and mild synthesis technique for fabricating fibrous membrane‐type catalyst electrodes is developed. Our method leverages the contrasting oxidation states between the sulfur‐doped NiFe(OH)2 shell and the metallic Ni core, as revealed by electron energy loss spectroscopy. Theoretical evaluations confirm that the S–NiFe(OH)2 active sites optimize free energy for alkaline water electrolysis intermediates. This technique bypasses traditional energy‐intensive processes, achieving superior bifunctional activity beyond current benchmarks. The symmetric AEM water electrolyzer demonstrates a current density of 2 A cm−2 at 1.78 V at 60°C in 1 M KOH electrolyte and also sustains ampere‐scale water electrolysis below 2.0 V for 140 h even in ambient conditions. These results highlight the system's operational flexibility and structural stability, marking a significant advancement in AEM water electrolysis technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call