Abstract
The article presents 28 GHz circular polarized antenna arrays designed in an embedded wafer level ball grid array (eWLB) package for 5G applications. The antenna arrays are realized on a re-distribution layer (RDL) in the fan-out region of the chip package. Two separate but identical arrays perform RX and TX operations where a crossed dipole is used as a building block of the array. These 4-element arrays have <−10 dB impedance bandwidth covering 25.3–29.8 GHz (4.5 GHz bandwidth) while presenting 10 dBi maximum realized gain. The measurement results show <3 dB axial ratio in the band 26–29.5 GHz, and the main beam can be steered in ± 50 ∘ in the azimuth plane when array elements are fed by appropriate phases from the chip. The radio frequency module provides 31 dBm maximum equivalent isotropic radiated power (EIRP).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of RF and Microwave Computer-Aided Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.