Abstract

The performance of a CMOS transmitter designed for planetary science in situ molecular sensing applications having an operational bandwidth of 180-190 GHz and peak output power of 0.6 mW (-2.22 dBm) is evaluated with a series of spectroscopic-based experimental trials. Continuous wave frequency modulated absorption schemes are exploited to probe the Doppler and sub-Doppler lineshape profiles of the water rotational transition at 183.310 GHz. These results demonstrate the tuning finesse and phase-noise characteristics of the integrated circuit embedded phase lock loop used to generate coherent mm-wave radiation are sufficient for high-precision molecular spectroscopy applications. A description of the pulse modulator designed into the CMOS circuitry allowing for implementation of sensitive emission-based Fourier transform detection schemes is provided with performance characterized for spectroscopically relevant pulse durations (40-500 ns). Results are accompanied by a spectral analysis of the transmitter pulse signal leakage, where the total isolation is measured to be 22 dB. The first emission-based molecular detections obtained with this source are presented demonstrating viability for this transmitter to be incorporated into future planned resonant cavity enhanced in situ molecular sensing systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call