Abstract

In order to achieve a high performance-to-cost ratio to photovoltaic devices, the development of crystalline silicon (c-Si) solar cells with thinner substrates and simpler fabrication routes is an important step. Thin-film heterojunction solar cells (HSCs) with dopant-free and carrier-selective configurations look like ideal candidates in this respect. Here, we investigated the application of n-type silicon/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HSCs on periodic nanopyramid textured, ultrathin c-Si (∼25 μm) substrates. A fluorine-doped titanium oxide film was used as an electron-selective passivating layer showing excellent interfacial passivation (surface recombination velocity ∼10 cm/s) and contact property (contact resistivity ∼20 mΩ/cm2). A high efficiency of 15.10% was finally realized by optimizing the interfacial recombination and series resistance at both the front and rear sides, showing a promising strategy to fabricate high-performance ultrathin c-Si HSCs with a simple and low-temperature procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.