Abstract

The optical electric field characteristics of graphene/Si heterojunction thin film solar cell as the function of wavelength photons incident have modeled and calculated. There is ITO/TiO2/C-Si/TiO2 device configuration in which p-n junction represented by C-Si and viewed as active layer for excited electrons production. The dependent of such electric field on wavelength can be understood by solving scattering matrix obtained from the interface matrix and layer matrix operation, in this report we have calculated the electric field distribution for several active layer thickness (dAL) conditions and each of them examined in the cases of x position are equal to zero, half and full of dAL while for the entire taking into account we used 250 – 840 nm wavelength range. However, this calculation is restricted by idealization assumption such as the complex refraction index is doesn’t change significantly by the thickness in hundred nanometer range, linear optical response described by scalar refraction complex index and the interface are parallel and flat compared to the wavelength of the light.The optical electric field characteristics of graphene/Si heterojunction thin film solar cell as the function of wavelength photons incident have modeled and calculated. There is ITO/TiO2/C-Si/TiO2 device configuration in which p-n junction represented by C-Si and viewed as active layer for excited electrons production. The dependent of such electric field on wavelength can be understood by solving scattering matrix obtained from the interface matrix and layer matrix operation, in this report we have calculated the electric field distribution for several active layer thickness (dAL) conditions and each of them examined in the cases of x position are equal to zero, half and full of dAL while for the entire taking into account we used 250 – 840 nm wavelength range. However, this calculation is restricted by idealization assumption such as the complex refraction index is doesn’t change significantly by the thickness in hundred nanometer range, linear optical response described by scalar refraction complex in...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call