Abstract

This paper presents a 14nm technology designed for high speed and energy efficient applications using strain-engineered FDSOI transistors. Compared to the 28nm FDSOI technology, this 14nm FDSOI technology provides 0.55× area scaling and delivers a 30% speed boost at the same power, or a 55% power reduction at the same speed, due to an increase in drive current and low gate-to-drain capacitance. Using forward back bias (FBB) we experimentally demonstrate that the power efficiency of this technology provides an additional 40% dynamic power reduction for ring oscillators working at the same speed. Finally, a full single-port SRAM offering is reported, including an 0.081°m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> high-density bitcell and two 0.090°m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> bitcell flavors used to address high performance and low leakage-low Vmin requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call