Abstract

The Lena River is the second largest river that discharges into the Arctic Ocean. It is therefore important to determine not only the direct impact its discharge has on the 137Cs concentration of the Arctic, but also the potential its drainage basin has as a 137Cs source. 137Cs surface sediment concentrations and inventory values, which range from 4.97 to 338 Bq kg −1 and 357 to 1732 Bq m −2, respectively, were determined for the Lena River drainage basin lake samples, via gamma analysis. The average geochemical and mineralogical composition of a subset of samples was also determined using neutron activation analysis, X-ray diffraction and X-ray fluorescence spectrometry techniques. Results of these geochemical analyses allowed for the identification of key geochemical factors that influence the distribution of 137Cs in the Lena River drainage basin. 137Cs profiles indicate that Lena River drainage basin lacustrine sediments serve as a record of 137Cs fallout. Based on the downcore 137Cs, %illite, %smectite, %Al and %Mn distribution patterns, it was concluded that a small fraction of non-selectively bound 137Cs was remobilized at depth in some cores. Inconsistencies between the actual 137Cs fallout record and the 137Cs profiles determined for the lake sediments were attributed to 137Cs remobilization in subsurface sediments. In addition to establishing the agreement between the global atmospheric fallout record and the downcore 137Cs distribution patterns determined for these sediments, results indicate that 137Cs deposited during periods of maximum atmospheric release was buried and is not susceptible to surface erosion processes. However, mean 137Cs concentrations of the lacustrine surface sediments (125 Bq kg −1) are still significantly higher than those of the nearby Lena River estuary (11.22 Bq kg −1) and Laptev Sea (6.00 Bq kg −1). Our study suggests that the Lena River drainage basin has the potential to serve as a source of 137Cs to the adjacent Arctic Ocean.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.