Abstract

What is the central question of this study? The tracer 36 Cl- , currently used to measure transepithelial Cl- fluxes, has become prohibitively expensive, threatening its future use. 125 Iodide, previously validated alongside 36 Cl- as a tracer of Cl- efflux by cells, has not been tested as a surrogate for 36 Cl- across epithelia. What is the main finding and its importance? We demonstrate that 125 I- can serve as an inexpensive replacement for measuring Cl- transport across mouse large intestine, tracking Cl- transport in response to cAMP stimulation (inducing Cl- secretion) in the presence and absence of the main gastrointestinal Cl- -HCO3- exchanger, DRA. Chloride transport is important for driving fluid secretion and absorption by the large intestine, with dysregulation resulting in diarrhoea-associated pathologies. The radioisotope 36 Cl- has long been used as a tracer to measure epithelial Cl- transport but is prohibitively expensive. 125 Iodide has been used as an alternative to 36 Cl- in some transport assays but has never been validated as an alternative for tracing bidirectional transepithelial Cl- fluxes. The goal of this study was to validate 125 I- as an alternative to 36 Cl- for measurement of Cl- transport by the intestine. Simultaneous fluxes of 36 Cl- and 125 I- were measured across the mouse caecum and distal colon. Net Cl- secretion was induced by the stimulation of cAMP with a cocktail of forskolin (FSK) and 3-isobutyl-1-methylxanthine (IBMX). Unidirectional fluxes of 125 I- correlated well with 36 Cl- fluxes after cAMP-induced net Cl- secretion, occurring predominantly through a reduction in the absorptive mucosal-to-serosal Cl- flux rather than by stimulation of the secretory serosal-to-mucosal Cl- flux. Correlations between 125 I- fluxes and 36 Cl- fluxes were maintained in epithelia from mice lacking DRA (Slc26a3), the main Cl- -HCO3- exchanger responsible for Cl- absorption by the large intestine. Lower rates of Cl- and I- absorption in the DRA knockout intestine suggest that DRA might have a previously unrecognized role in iodide uptake. This study validates that 125 I- traces transepithelial Cl- fluxes across the mouse large intestine, provides insights into the mechanism of net Cl- secretion and suggests that DRA might be involved in intestinal iodide absorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.