Abstract

ObjectiveThe large intestine has been reported to have a capacity for iron absorption and expresses genes for iron absorption normally found in the duodenum. The importance and function of these genes in the large intestine are not understood. We therefore investigated the cellular localization and regulation of expression of these genes in mouse caecum and colon.Material and methodsGene expression was measured by real-time PCR using RNA extracted from iron-deficient and hypoxic mouse large intestine, compared to controls. Protein localization and regulation were measured by immunohistochemistry using frozen sections of the large intestine from the same mice.ResultsDcytb (duodenal ferric reductase) was expressed at very low levels in the large intestine, compared to the duodenum, while Ireg1 and DMT1 were expressed at significant levels in the large intestine and were increased in iron-deficient caecum, proximal and distal colon, with the most significant increases seen in the distal colon. Hypoxia increased Ireg1 expression in the proximal colon. Immunohistochemistry detected significant levels of only IREG1, which was localized to the basolateral membrane of colonic epithelial cells.ConclusionsIron absorption genes were expressed at lower levels in mouse caecum and colon than in the duodenum. They are regulated by body iron requirements. Colonic epithelial cells express basolateral IREG1in the same fashion as in the duodenum and this protein could regulate colonic epithelial cell iron levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.