Abstract

BackgroundThe D1-dopamine receptor radioligand [11C]SCH23390 has been frequently used in PET studies. In drug-naïve patients with schizophrenia, the findings have been inconsistent, with decreases, increases, and no change in the frontal cortex D1-dopamine receptors. While these discrepancies are likely primarily due to a lack of statistical power in these studies, we speculated that an additional explanation may be the differences due to methods of image analysis between studies, affecting reliability as well as bias between groups.MethodsFifteen healthy subjects underwent two PET measurements with [11C]SCH23390 on the same day. The binding potential (BPND) was compared using a 95% confidence interval following manual and automated delineation of a region of interest (ROI) as well as with and without frame-by-frame realignment.ResultsAutomated target region delineation produced lower BPND values, while automated delineation of the reference region yielded higher BPND values. However, no significant differences were observed for repeatability using automated and manual delineation methods. Frame-by-frame realignment generated higher BPND values and improved repeatability.ConclusionsThe results suggest that the choice of ROI delineation method is not an important factor for reliability, whereas the improved results following movement correction confirm its importance in PET image analysis. Realignment is therefore especially important for measurements in patient populations such as schizophrenia or Parkinson’s disease, where motion artifacts may be more prevalent.

Highlights

  • The D1-dopamine receptor radioligand [11C]SCH23390 has been frequently used in PET studies

  • A wider consideration is that the series of D1-dopamine receptor (D1-DR) studies in schizophrenia has been reported over many years during which time the methods for image analysis have been improved, including the development of new software and strategies for the definition of regions of interest (ROI) and methods for motion correction

  • The highest values were obtained for the caudate (59%), putamen (57%), and insula (69%), indicating that the ROIs overlapped to a major extent

Read more

Summary

Introduction

The D1-dopamine receptor radioligand [11C]SCH23390 has been frequently used in PET studies. In drug-naïve patients with schizophrenia, the findings have been inconsistent, with decreases, increases, and no change in the frontal cortex D1-dopamine receptors. While these discrepancies are likely primarily due to a lack of statistical power in these studies, we speculated that an additional explanation may be the differences due to methods of image analysis between studies, affecting reliability as well as bias between groups. The development of molecular imaging in the 1980s was largely driven by the need to examine the dopamine system in CNS disorders such as schizophrenia and Parkinson’s disease [1, 2]. Structural brain atlases and software tools were developed for automated definition of ROIs, offering advantages in terms of reduced investigator bias and workload [15]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.