Abstract

To increase the efficiency of aircraft gas turbine engines, it is necessary to increase the temperature of the gas before the turbine. However, metal alloys used in modern designs may not be used for this without a reduction in the durability of parts. One way to solve this problem is to develop turbine designs with ceramic elements. The issues of ensuring thermal resistance of the lock joints of turbine impellers with blades made of monolithic ceramic material are considered in this work. Models of mechanical and thermal contact of ceramic and metal parts are presented. The influence of the scale factor and stress concentration factor on the tensile strength of the ceramic parts is studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.