Abstract

A novel method of producing complex ceramic and metallic parts with designed internal channels is developed. The method utilizes a combination of the additive manufacturing technique of solvent jetting and spark plasma sintering (SPS.) The developed manufacturing approach brings benefits in producing complex shapes with internal channels. Along with geometric customization of the 3D printed mold, a major advantage of this method is the removal of the need for a long debinding process, usually necessary with other 3D printing methods, by using the SPS. High density ceramic and metallic complex parts with internal channels were successfully produced with close to theoretical densities. The conducted studies include the development of a model that can predict the evolution and/or distortions of the complex-shaped powder assembly during the sintering process. The model is based on the continuum theory of sintering formulations embedded in a finite element code.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.