Abstract
본 논문에서는 다차원 문제로 인하여 발생하는 패턴 분류 성능의 저하를 방지 하여 퍼지 패턴 분류기의 성능을 개선하기 위하여 다수의 Feature들 중에서 패턴 분류 성능 향상에 기여하는 Feature를 선택하기 위한 새로운 Feature Selection 방법을 제안 한다. 새로운 Feature Selection 방법은 각각의 Feature 들을 퍼지 클러스터링 기법을 이용하여 클러스터링 한 후 각 클러스터가 임의의 class에 속하는 정도를 계산하고 얻어진 값을 이용하여 해당 feature 가 fuzzy pattern classifier에 적용될 경우 패턴 분류 성능 개선 가능성을 평가한다. 평가된 성능 개선 가능성을 기반으로 이미 정해진 개수만큼의 Feature를 선택하는 Feature Selection을 수행한다. 본 논문에서는 제안된 방법의 성능을 평가, 비교하기 위하여 다수의 머신 러닝 데이터 집합에 적용한다. In this paper, in order to avoid the deterioration of the pattern classification performance which results from the curse of dimensionality, we propose a new feature selection method. The newly proposed feature selection method is based on Fuzzy C-Means clustering algorithm which analyzes the data points to divide them into several clusters and the concept of a function with fuzzy numbers. When it comes to the concept of a function where independent variables are fuzzy numbers and a dependent variable is a label of class, a fuzzy number should be related to the only one class label. Therefore, a good feature is a independent variable of a function with fuzzy numbers. Under this assumption, we calculate the goodness of each feature to pattern classification problem. Finally, in order to evaluate the classification ability of the proposed pattern classifier, the machine learning data sets are used.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have