Abstract

Hyperspectral images are the multidimensional matrices consisting of hundreds of spectral feature vectors. Thanks to these large number of features, the objects on the Earth having similar spectral characteristics can easily be distinguished from each other. However, the high correlation and the noise between these features cause a significant decrease in the classification performances, especially in the supervised classification tasks. In order to overcome these problems, which is known in the literature as Hughes's effects or curse of dimensionality, dimensionality reduction techniques have frequently been used. Feature selection and feature extraction methods are the ones used for this purpose. The feature selection methods aim to remove the features, including high correlation and noise, out of the original feature set. In other words, a subset of relevant features that have the ability to distinguish the objects is determined. The feature extraction methods project the high dimensional space into a lower-dimensional feature space based on some optimization criterion, and hence they distort the original characteristic of the dataset. Therefore, the feature selection methods are more preferred than the feature extraction methods since they preserve the originality of the dataset. Based on this motivation, an evolutionary based optimization algorithm utilizing self organizing map was accordingly modified to provide a new feature selection method for the classification of hyperspectral images. The proposed method was compared to well-known feature selection methods in the classification of two hyperspectral datasets: Botswana and Indian Pines. According to the preliminary results, the proposed method achieves higher performance over other feature selection methods with a very less number of features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.