Abstract

Mathematical modeling of heat exchange process in straight and round horizontal pipes with protrusions and d/D=0.95...0.90, t/D=0.25...1.00 of triangular and square sections with large Reynolds numbers (RE=106) are carried out on the basis of multiblock computing technologies based on solutions of factored and finite-volume algorithm of RANS equations and energy equations. It is shown that for higher square protrusions and at higher Reynolds numbers, a limited increase in NU/NUgl is accompanied by a significant increase in relative hydro resist ance in accordance with the higher Reynolds number; for triangular turbulators, this persists and even deepens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.