Abstract

Рассматривается общий подход к доасимптотическому анализу схем с разными качествами во всех сочетаниях по их различимости составляющих их элементов (ячеек и частиц). Для этого в каждой группе таких схем с общими ограничениями вместо непосредственного их изучения на основе учета специфики каждой схемы предлагается некоторый общий набор алгоритмических процедур пересчета результатов их доасимптотического анализа в схеме начиная со схемы с наибольшей дифференциацией их исходов последовательно для остальных схем группы с различиями в качестве одного элемента. Анализ каждой схемы проводится по традиционным и по ряду следующих новых направлений: построение случайного процесса формирования и нумерованного бесповторного перечисления исходов схемы в порядке их получения; нахождение числа исходов схемы; решение задачи нумерации для исходов схемы, состоящей в установлении взаимно однозначного соответствия между их видами и номерами; задание их вероятностного распределения и моделирования исходов схемы с этим вероятностным распределением. В частности, отдельно изучаются случаи групп схем без ограничений размещения частиц и с ограничением (не более одной частицы в ячейке), приводящие к некоторым известным аналитическим результатам. При любых ограничениях в рассматриваемой группе схем их анализ проводится путем реализации алгоритмических процедур последовательного преобразования результатов анализа одной схемы группы для другой. Объединения в такие пары схем производятся по признаку различия качества одного их элемента.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.