Abstract

The PURPOSE of the paper is to determine the stress state and the plastic deformation zone of cylindrical parts under transverse burnishing by flat plates. METHODS. The mathematical apparatus based on the laws of the theory of elastico-plastic solid is used in the work. RESULTS AND THEIR DISCUSSION. We have obtained analytical dependences for the determination of the stress components and the zone of plastic deformation under transverse burnishing by flat plates. The calculation results have shown that there is a stressed state of dilatation in the center of the workpiece cross-section and there is a stressed state of compression in the workpiece shell after the transverse burnishing. The depth of the plastic deformation zone depends on the degree of percentage reduction and the coefficient of friction between the workpiece and the plates. CONCLUSIONS. It is proposed to use the method of transverse burnishing by flat plates to harden low rigid cylindrical parts of the shaft and axle type. The developed mathematical model provides quite reliable values of the stressed state of the plastic deformation zone. The radius of the elastic deformation zone depends on the degree of percentage reduction and the coefficient of friction between the workpiece and the plates when transverse burnishing by flat plates. The hardening method employing transverse burnishing by flat plates eliminates cracking and material breakage in the central region of cylindrical products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call