Abstract

AbstractThe results of computer simulation of the influence of silicon impurities on the degree of tetragonality and on the interaction of carbon atoms in the body-centered cubic (BCC) lattice of iron by the molecular-dynamics method are reported. The influence of silicon on the martensite-lattice parameters has been established, as well as the dependence of the deformation interaction parameter λ_0 determining the critical temperature of the BCC–BCT (body-centered tetragonal) transition on the silicon concentration, is calculated on the basis of the Zener–Khachaturyan theory of ordering. It is found that the λ_0 parameter decreases by 18% from 5.2 to 4.2 eV/atom upon an increase in the silicon content up to 10 at %.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.