Abstract
One of the promising ways to reduce the dependence of domestic industry on the supply of critical goods, components and raw materials necessary for the construction and effective functioning of multi-stage production and technological chains is to intensify processes for their import substitution, including through various measures of state support. However, the critical need for a wide range of products requires the selection of the most “promising” projects for inclusion in program-target documents using a set of criteria (sometimes even non-financial). As a result, there arises an urgent scientific and practical task of developing approaches to the formation of multi-projects (a set of projects) that can qualify for state support under various programs to reduce import dependence and overcome the technological backwardness of Russian industry, based on the use of modern economic and mathematical methods. In the application to this task, a multi-project can be represented as a “set” (unrelated projects), a “chain” (rigid sequence of projects) or a “network” (projects with complex logical-temporal interrelations). The specifics of each type determine the conditions and impose restrictions on the processes of selecting components for inclusion in their composition, which consists of finding the best combination of projects and/or programs, i. e., it is reduced to a task of conditional multidimensional optimization. In the absence of a requirement to find a “strictly optimal” composition, one can use metaheuristic methods that are capable of finding solutions close to these in an “acceptable” time. Among them, the largest and most well-known class are swarm intelligence algorithms based on the principles of collective behavior of a population of living organisms. To form the composition of multi-projects, the article proposes to use algorithms inspired by the collective behavior of a pack of wolves (Grey Wolf Optimizer) and a school of fish (Fish School Search) to satisfy their food needs. To increase the efficiency of their use for solving the task of finding the best composition of a “set” and “network” of projects, their hybridization with fuzzy logic methods (in particular, fuzzy clustering and fuzzy-logical inference) was proposed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have