Abstract

This Ph.D. thesis presents a comprehensive study on printed fractal antennas for wireless terminal devices, with emphasis on mobile and wireless local area network applications. The rapid evolution of wireless communications resulted in a decrease of terminal devices’ dimensions, in the integration of different services, operating in different spectra, in the same device and finally in the deployment of multiple antenna systems to mitigate the phenomena of fading and intersymbol interference of wireless channel. These evolutions, in turn, set new demands on antenna’s design leading to the necessity of exceptionally small, multiband and low cost radiators possessing high efficiency and desirable radiation characteristics. In the context of the present work, the miniaturization and multiband ability of fractal shaped antennas is examined. Initially a new antenna type is proposed, that of printed fractal monopole antennas, and several innovative fractal shaped monopoles are compared with respect to their miniaturization ability, input impedance and radiation characteristics. The important role of the ground plane is also investigated and general conclusions are drawn to exploit its effects in the most appropriate way. The application of fractals on microstrip antennas was further studied with the fractal rectangular curve (frc) microstrip antenna being proposed for linear and circular polarization applications. The frc microstrip antenna proved to possess a noticeable miniaturization ability and a geometry with several degrees of freedom that can be used either to reduce further its size, or to keep the bandwidth to a satisfactory level. Due to the compact size and desirable electrical characteristics of printed monopole and microstrip fractal antennas, they were further considered for the implementation of multi element antenna systems in order to improve the SNR of the received signal. Finally, the multiband ability of the Sierpinski monopole antenna is investigated and a modification is proposed to decrease the overall antenna height making it feasible to be printed in small terminal devices. Several techniques to allocate the desirable bands of interest are also discussed along with the effect the ground plane dimension’s on the system’s input impedance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call