Abstract

This article presents a theoretical study of the scattering and absorption of an electromagnetic wave from the gigahertz to the red range for a model of amorphous carbon modified by metals. On the basis of structural studies of this material, a cylindrical anisotropic nanoparticle - a nanotube responsible for its absorbing and antireflection properties - was selected as a candidate. A model of such a particle was developed and the scattering and absorption cross sections of an electromagnetic wave were calculated within the framework of the theory of the discrete dipole approximation. A pair of nanotubes allowed us to explain the contribution of the interaction of immediate neighbors to scattering and absorption. The constructed model explains the effect of absorption of radio-frequency electromagnetic radiation, observed experimentally in amorphous carbon modified with metals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call