Abstract
본 논문에서는 인과관계 지식의 표현과 추론에 가장 대표적으로 사용되는 퍼지인식도(FCM, Fuzzy Cognitive Map)와 베이지안 신뢰 네트워크(BBN, Bayesian Belief Network)를 구조적으로 분석한다. 퍼지인식도와 베이지안 신뢰 네트워크는 의사 결정을 지원하는데 중요한 인과관계 지식을 표현하고 추론하는데 사용되는 가장 대표적인 프레임워크이지만 인과관계 지식응용 영역에서 두 프레임워크의 역할에 대한 구조적 비교 연구는 이루어지지 않고 있다. 본 논문에서는 두 프레임워크의 구조적 비교를 통해 퍼지인식도와 베이지안 신뢰 네트워크의 중요한 특징들을 추출하고, 이를 통해 인과 지식 공학에서 어떻게 퍼지 인식도와 베이지안 신뢰 네트워크가 이용되어야 하는지를 보인다. 인과관계 지식의 표현과 추론의 과정을 평가하는데 비교 평가를 위한 항목으로서 본 논문에서는 사용성, 표현력, 추론능력, 정형화와 완결성이 사용되었다. Fuzzy Cognitive Map (FCM) and Bayesian Belief Network (BBN) are two major frameworks for modeling, representing and reasoning about causal knowledge. Despite their extensive use in causal knowledge engineering, there is no reported work which compares their respective roles. This paper aims to fill the gap by providing a qualitative comparison of the two frameworks through a systematic analysis based on some inherent features of the frameworks. We proposed a set of comparison criteria which covers the entire process of causal knowledge engineering, including modeling, representation, and reasoning. These criteria are usability, expressiveness, reasoning capability, formality, and soundness. The results of comparison have revealed some important facts about the characteristics of FCM and BBN, which will help to determine how FCM and BBN should be used, with respect to each other, in causal knowledge engineering.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have