Abstract
In the information retrieval systems like vector model implementation and document clustering, document similarity calculation takes a great part on the overall performance of the system. In this paper, GPU parallelism has been explored to enhance the processing speed of document similarity calculation in a CUDA framework. The proposed method increased the similarity calculation speed almost 15 times better compared to the typical CPU-based framework. It is 5.2 and 3.4 times better than the methods by using CUBLAS and Thrust, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.