Abstract
Introduction: Forecasting of the wastewater quality parameters has great importance in modern wastewater treatment methods. One of the main problems in predicting the efficacy of a wastewater treatment is the complexity of physicochemical properties of raw sewage and data differences for different reasons. Modeling of wastewater treatment using Adaptive Neural Fuzzy Inference System (ANFIS)- can help to improve wastewater quality control process. The aim of the study was to modeling of treatment of dairy wastewaters by electrocoagulation process using ANFIS. Methods: In this study, ANFIS was used to estimate the chemical coagulation of dairy wastewater treatment. The input parameters to the ANFIS model were time, voltage, total suspended solids and boichemical oxygen demand and the output was chemical oxygen demand removal efficiency. Also the membership functions, the number of membership functions and number of learning cycles (Epochs) were used for optimization of different models by trial and error. Results: The best model was assessed by bell-shaped membership functions with number of membership functions as 3 3 3 3 3 and 300 epochs of training with lowest mean square error(MES) and the best coefficient of determination (R2). The coefficient of determination and MSE of the best ANFIS model were 0.9912 and 0.012, respectively. Conclusion: Analysis of the model revealed that the ANFIS is a powerful tool to predict the dairy wastewater treatment using electrical coagulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.