Abstract

The PURPOSE of the study is search for new and modernization of known generation methods of random processes with specified static (probability distribution law) and dynamic (correlation function) probabilistic properties. METHODS. The main research methods used in the study are the probability theory, mathematical statistics and numerical methods. RESULTS. The object of the study is a permutational technology of random process generation with a simultaneously specified probability distribution law and an autocorrelation function. This technology is simple in software implementation, has high response speed and allows to introduce the required probability properties with the accuracy of their reflection, sufficient for engineering applications (e.g. in simulation modeling). The Bernoulli (binary) law is taken as a law of probability distribution of the generated process. The conducted analysis of the probabilistic properties of the behavior of the permutation procedure components has resulted in the identification of new, previously unknown functional capabilities of this method of random process generation. Probabilistic properties (probability distribution laws and autocorrelation functions of the candidate vector components) are systematized depending on a mathematically justified permutation variant. The study is given to two variants of the permutational method that allows to generate a periodically correlated binary process. It is proved that these variants simultaneously provide the possibility to generate a two-dimensional binary random process. CONCLUSION. Conducted theoretical studies allowed to expand the functionalities of the permutational procedure of binary random process generation due to the possibility to generate a two-dimensional random binary process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call