Abstract

В рамках уравнений Навье-Стокса рассмотрены нестационарные осесимметричные течения однородной вязкой несжимаемой жидкости, в которых осевая и окружная скорости зависят только от радиуса и от времени, а радиальная скорость равна нулю. Показано, что скорость таких течений представляет собой сумму скоростей двух течений вязкой несжимаемой жидкости: осевого течения (радиальная и окружная скорости равны нулю) и окружного течения (радиальная и осевая скорости равны нулю). Осевое и окружное движения происходят независимо, не оказывая никакого взаимного влияния. Это позволяет расщеплять краевые задачи для рассматриваемого типа течений, содержащие три неизвестные функции (давление, окружная и осевая скорости), на две задачи, каждая из которых содержит две неизвестные функции (давление и одна из компонент скорости). При этом сумма давлений осевого и окружного течений будет давлением исходного течения. Обнаруженная возможность расщепления позволяет с использованием известных решений пополнить «запасы» осевых и окружных точных решений. Эти решения, в свою очередь, можно суммировать в различных комбинациях и в результате получать скорости и давления новых точных решений уравнений Навье-Стокса.

Highlights

  • It is shown that the velocity of such flows is the sum of the velocities of two flows of a viscous incompressible fluid: axial flow and circumferential flow

  • The sum of pressures of the axial and circumferential flow will be the pressure of the initial flow

  • Quelques solutions exactes des équations d’hydrodynamique du fluide visqueux dans le cas d’un tube cylindrique // J

Read more

Summary

Общероссийский математический портал

Расщепление уравнений Навье– Стокса для одного класса осесимметричных течений, Вестн. В рамках уравнений Навье—Стокса рассмотрены нестационарные осесимметричные течения однородной вязкой несжимаемой жидкости, в которых осевая и окружная скорости зависят только от радиуса и от времени, а радиальная скорость равна нулю. Что скорость таких течений представляет собой сумму скоростей двух течений вязкой несжимаемой жидкости: осевого течения (радиальная и окружная скорости равны нулю) и окружного течения (радиальная и осевая скорости равны нулю). Это позволяет расщеплять краевые задачи для рассматриваемого типа течений, содержащие три неизвестные функции (давление, окружная и осевая скорости), на две задачи, каждая из которых содержит две неизвестные функции (давление и одна из компонент скорости). Б. Расщепление уравнений Навье—Стокса для одного класса осесимметричных течений // Вестн.

Сведения об авторе
Библиографический список

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.