Abstract

본 연구의 목적은 초등수학영재의 수학 창의적 문제해결력과 메타인지와의 관계, 수학 창의적 문제해결력에 대한 메타인지 구성 요소별 영향력을 밝혀 수학 창의적 문제해결력을 향상시키기 위한 교수 방법으로서 메타인지적 접근에 대한 기초 정보를 제공하는 것이다. 연구 대상은 광역시 소재 대학교 영재교육원의 5학년 초등수학영재 40명과 초등학교 영재학급의 5학년 초등수학영재 40명으로 총 80명이다. 연구결과 초등수학영재 집단 안에서도 수학 창의적 문제해결력과 메타인지의 개인차가 크게 나타났으며 수학 창의적 문제해결력과 메타인지는 유의미한 상관 관계를 보였다. 또한 수학 창의적 문제해결력 전체에 상대적으로 가장 큰 영향을 미치는 메타인지 구성요소는 메타 인지적 지식으로 나타났고, 수학 창의적 문제해결력 중 유창성과 독창성 요소에 가장 큰 영향을 미치는 메타인지 구성요소는 메타인지적 지식이며, 융통성에 가장 큰 영향을 미치는 메타인지적 구성요소는 메타인지적 자기조정으로 나타났다. 메타인지적 경험은 상대적으로 적은 영향을 미치는 것으로 나타났다. 따라서 수학 창의적 문제해결력과 메타인지와의 관련성을 고려하여 초등수학영재의 창의적 문제해결력을 높일 수 있는 메타인지적 접근을 기반으로 한 구체적인 교육과정과 수학영재 교육 프로그램이 개발되어야 함을 시사하는 것이라 볼 수 있다. The purpose of this study is to determine the relationship between metacognition and math creative problem solving ability. Specific research questions set up according to the purpose of this study are as follows. First, what relation does metacognition has with creative math problem-solving ability of mathematically gifted elementary students? Second, how does each component of metacognition (i.e. metacognitive knowledge, metacognitive regulation, metacognitive experiences) influences the math creative problem solving ability of mathematically gifted elementary students? The present study was conducted with a total of 80 fifth grade mathematically gifted elementary students. For assessment tools, the study used the Math Creative Problem Solving Ability Test and the Metacognition Test. Analyses of collected data involved descriptive statistics, computation of Pearson's product moment correlation coefficient, and multiple regression analysis by using the SPSS Statistics 20. The findings from the study were as follows. First, a great deal of variability between individuals was found in math creative problem solving ability and metacognition even within the group of mathematically gifted elementary students. Second, significant correlation was found between math creative problem solving ability and metacognition. Third, according to multiple regression analysis of math creative problem solving ability by component of metacognition, it was found that metacognitive knowledge is the metacognitive component that relatively has the greatest effect on overall math creative problem-solving ability. Fourth, results indicated that metacognitive knowledge has the greatest effect on fluency and originality among subelements of math creative problem solving ability, while metacognitive regulation has the greatest effect on flexibility. It was found that metacognitive experiences relatively has little effect on math creative problem solving ability. This findings suggests the possibility of metacognitive approach in math gifted curricula and programs for cultivating mathematically gifted students' math creative problem-solving ability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.