Abstract

The study of plant adaptation mechanisms during the salt stress is required to provide an increase in plant productivity under such conditions. Along with a decrease in the availability of water for plants, the NaCL-induced inhibition of plant growth is associated with the toxic effect of sodium ions. The formation of apoplastic barriers due to the deposition of suberin and lignin restricts passive ion diffusion. However, the formation of such barriers reduces the capacity of the apoplastic pathway for water movement. In these conditions the role of transmembrane water transport is increased. This process is provided by aquaporin water channels. Thus the purpose of this work was to determine the contribution of aquaporins to hydraulic conductivity of peas plants under salinity-induced apoplastic barrier formation. An only slight decrease in plants transpiration caused by mercury chloride in the absence of salinization was in accordance with the ideas the apoplast is the dominant pathway when the Casparian bands is not formed yet. Salt stress in our experiments accelerated the development of the Casparian bands formation which could be visualized as an appearance of suberin strips in root endodermis which in turn was accompanied by a decrease in hydraulic conductivity. The decrease in hydraulic conductivity in 2 times during the mercury chloride treatment under salinity confirmed that contribution of aquaporins to the total hydraulic conductivity was increased under conditions when Casparian bands have had formed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call