Abstract

The article considers specialized forest firefighting vehicles required to extinguish forest fires. An overview of modern domestic and foreign forest firefighting equipment and techniques for fighting forest fires is presented. Rapid heating of the cabin enclosure surfaces is a common weakness of the thermal shielding of a forest firefighting vehicle when extinguishing fires in extreme conditions. Therefore, the following issues remain relevant: problem of increasing the forest firefighting vehicle operation efficiency when extinguishing fires; issues of ensuring the operability and optimization of operation parameters and modes; development and creation of new fire protection materials; improving the cabin ergonomics and operator safety. The paper provides substantiation for optimizing the parameters and operation modes of a forest firefighting vehicle on the basis of the given tactical scheme of forest fire extinguishing. The objective function of the mathematical optimization problem is the production capacity, i.e. the area that can be extinguished by a forest fire vehicle. As control factors we consider following parameters of main and auxiliary equipment: capacity of pumps supplying water and foam/water mixtures; water tank capacity; estimated time of forest fire extinguishing and flame retardant properties of the forest firefighting vehicle structure elements, particularly spontaneous ignition temperature of cabin enclosure thermal insulation. The mathematical optimization problem is solved by the analytical method. Methods of computational mathematics and applied programming are used for numerical calculations and software implementation. The solution of the problem enables to calculate the production capacity of a forest firefighting vehicle, determine the required flame retardant properties of the cabin enclosure surfaces and propose new structural fire-resistant materials, recommend the main and auxiliary equipment. Improving the ergonomics of cabins during firefighting will improve the safety of the operator’s working conditions. The effective operation of a forest firefighting vehicle while firefighting reduces the damage to the environment and the losses caused by the destruction of millions hectares of forest. For citation: Pitukhin E.A., Rogozin S.S. Optimizing the Forest Firefighting Vehicle Operation Modes. Lesnoy Zhurnal = Russian Forestry Journal, 2022, no. 6, pp. 139–152. (In Russ.). https://doi.org/10.37482/0536-1036-2022-6-139-152

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.