Abstract
도시녹지는 열섬현상을 감소시키고 여가나 휴식 공간으로 활용되는 등 도시민의 삶의 질을 향상시키는 중요한 역할을 하는 도시 기반시설이다. 그러나 양적인 개발효율에 치중한 관행으로 도시녹지의 체계적인 관리가 미흡했던 것이 사실이다. 녹지총량제와 같은 보존을 위한 제도적 틀은 갖추어 가고 있지만, 정확한 녹지량을 산정하는 기술적 측면은 상대적으로 보완할 여지가 크다. 최근 들어 원격탐사를 이용한 녹지나 도시 기반시설의 정량적 탐지를 수행한 다양한 연구들이 수행 되었다. 그러나 기존 연구들이 활용한 자료의 공간 해상도를 고려하였을 때 도시 내에 무수히 존재하는 소규모 녹지공간의 탐지가 효과적으로 되었다고 보기 힘들다. 이러한 맥락에서 본 연구에서는 초분광 영상(CASI-1500)을 활용한 도시 내 소규모 녹지에 대한 정량적 탐지를 수행하였다. 이를 위해 식생지수를 산출하여 소규모 녹지공간의 탐지 여부를 검토한 뒤, ISODATA와 SAM 기법을 적용한 감독분류, 무감독분류를 통해서 각 방법들이 소규모 녹지공간 탐지에 적절한지 비교하였다. 미분류, 불투수성, 녹지로 의심되는 영역, 녹지의 4개의 피복으로 분류하여 SAM 기법에 사용된 참조스펙트럼의 차이를 비교하였다. Urban green space is one of most important aspects of urban infrastructure for improving the quality of life of city dwellers as it reduces the heat island effect and is used for recreation and relaxation. However, no systematic management of urban green space has been introduced in Korea as past practices focused on efficient development. A way to calculate the amount of green space needed to complement an urban area must be developed to preserve urban green space and to determine 'regulations determining the total amount of greenery'. In recent years, various studies have quantified urban green space and infrastructure using remotely sensed data. However, it is difficult to detect a myriad small green spaces in a city effectively when considering the spatial resolution of the data used in existing research. In this paper, we quantified small urban green spaces using CASI-1500 hyperspectral imagery. We calculated MCARI, a vegetation index for hyperspectral imagery, to evaluate the greenness of small green spaces. In addition, we applied image-classification methods, including the ISODATA algorithm and Spectral Angle Mapper, to detect small green spaces using supervised and unsupervised classifications. This could be used to categorize land-cover into four classes: unclassified, impervious, suspected green, and vegetation green.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Korean Association of Geographic Information Studies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.