Abstract
본 논문에서는 하이브리드 공간 DBMS에서 질의 분류를 이용한 최적화 기법을 제안한다. 제안 기법은 질의에 이용되는 데이터의 위치에 따라 메모리 질의, 디스크 질의, 하이브리드 질의로 분류하여 처리한다. 특히, 하이브리드 질의의 경우에는 실체화 뷰의 사용률을 높이기 위해 실체화 뷰 생성 조건과 사용자 질의 조건을 비교하여 술어를 분할하는 메커니즘을 적용한다. 또한 질의를 최적화하기 위해 분류된 질의의 비용 계산 결과를 이용하여 최소 비용의 데이터 접근 경로를 선택할 수 있는 데이터 접근 경로 선택 알고리즘을 제안한다. 제안 기법은 대용량 데이터 관리와 빠른 응답 속도를 동시에 만족하는 하이브리드 공간 DBMS의 성능을 기존의 디스크 기반 공간 DBMS보다 최소 20%에서 최대 50%의 성능 향상을 보인다. We propose the query optimization technique using query classification in hybrid spatial DBMS. In our approach, user queries should to be classified into three types: memory query, disk query, and hybrid query. Specialty, In the hybrid query processing, the query predicate is divided by comparison between materialized view creating conditions and user query conditions. Then, the deductions of the classified queries' cost formula are used for the query optimization. The optimization is mainly done by the selection algorithm of the smallest cost data access path. Our approach improves the performance of hybrid spatial DBMS than traditional disk-based DBMS by <TEX>$20%{\sim}50%$</TEX>.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have