Abstract
New chalcospinels of the most common compositions were predicted: AIBIIICIVX4 (X — S or Se) and AIIBIIICIIIS4 (A, B, and C are various chemical elements). They are promising for the search for new materials for magneto-optical memory elements, sensors and anodes in sodium-ion batteries. The parameter “a” values of their crystal lattice are estimated. When predicting only the values of chemical elements properties were used. The calculations were carried out using machine learning programs that are part of the information-analytical system developed by the authors (various ensembles of algorithms of: the binary decision trees, the linear machine, the search for logical regularities of classes, the support vector machine, Fisher linear discriminant, the k-nearest neighbors, the learning a multilayer perceptron and a neural network), — for predicting chalcospinels not yet obtained, as well as an extensive family of regression methods, presented in the scikit-learn package for the Python language, and multilevel machine learning methods that were proposed by the authors — for estimation of the new chalcospinels lattice parameter value). The prediction accuracy of new chalcospinels according to the results of the cross-validation is not lower than 80%, and the prediction accuracy of the parameter of their crystal lattice (according to the results of calculating the mean absolute error (when cross-validation in the leave-one-out mode)) is ± 0.1 Å. The effectiveness of using multilevel machine learning methods to predict the physical properties of substances was shown.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have