Abstract

최근 공간정보 기술은 정확도와 효율성 측면에서 큰 발전을 이루어 왔다. 특히, 항공 레이저 스캐너로부터 획득한 점군집 데이터를 이용하여 3차원 공간정보를 획득할 수 있게 되었다. 다양한 3차원 공간 데이터 구축에 대한 연구는 국내외의 관심 분야이며, 객체 모델링은 가장 중요한 과정이다. 본 연구의 목적은 건물 모델링의 자동화 알고리즘 개발과 이를 검증할 수 있는 시뮬레이션 데이터의 생성이다. 시뮬레이션 데이터는 건물의 다양성을 고려하여 경사형, 피라미드형, 돔형, 복합 다각형과 같은 여러 복잡한 형태의 지붕으로 구성된 객체이다. 이 논문에서는 면교차점(Model key point) 결정을 통한 자동 건물 모델링을 위하여 지붕면 패치를 기하학적 특징을 기반으로 분할하였다. 실험 결과로부터 분할된 면들은 최적의 수학적 함수에 의해 모델링 되며, 객체를 구성하는 면교차점들을 추출할 수 있었고, 인공지물에 대한 수치도화 제작을 위한3차원 도화가 가능하였다. Recent spatial information technology has brought innovative improvement in both efficiency and accuracy. Especially, airborne LiDAR system(ALS) is one of the practical sensors to obtain 3D spatial information. Constructing reliable 3D spatial data infrastructure is world wide issue and most of the significant tasks involved with modeling manmade objects. This study aims to create a test data set for developing automatic building modeling methods by simulating point cloud data. The data simulates various roof types including gable, pyramid, dome, and combined polyhedron shapes. In this study, a robust bottom-up method to segment surface patches was proposed for generating building models automatically by determining model key points of the objects. The results show that building roofs composed of the segmented patches could be modeled by appropriate mathematical functions and the model key points. Thus, 3D digitizing man made objects could be automated for digital mapping purpose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.