Abstract

In this paper we study mixed modules, with the following property: every homogeneous function of several variables of a module is additive. By a homogeneous function we mean any mapping of the direct sum of a finite number of copies of a module into the module itself that commutes with the endomorphisms of the given module. In the universal algebra, the algebraic structure is said to be endoprimal if all its term-functions commute with endomorphisms. It is well-known that each endodualizable finite algebra is endoprimal. Some authors have studied endoprimal algebras in varieties of vector spaces, semilattices, Boolean algebras, Stone algebras, Heyting algebras, and Abelian groups. In this article, the links between endoprimality and the properties of the multiplicative semigroup of the endomorphism ring of a module, which the author started earlier. Classes of mixed non-reduced splitting modules and reduced modules over commutative Dedekind ring have been investigated. Links between this problem and the property of unique additivity has been shown.

Highlights

  • В то же время, если модуль Dtf (M ) изоморфен Q, то он не является обобщенно эндопримальным и его кольцо эндоморфизмов не обладает свойством однозначности сложения

  • Uniqueness of addition in semisimple Lie algebras // Russian Math

Read more

Summary

Introduction

Если каждая n-арная эндофункция модуля M является n-арной терм-функцией (n-арной обобщенной терм-функцией), то модуль M называется n-эндопримальным (обобщенно n-эндопримальным). Пусть M = Dtf (M ) ⨁︀ ⨁︀ tP (M ) — R-модуль такой, что Тогда EndR(M ) — UA-кольцо и M — обобщенно эндопримальный модуль.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.