Abstract

The results of the study of heterostructures based on short-period InGaAs/InGaAlAs superlattices fabricated by molecular beam epitaxy on an InP substrate with the aim of using them as active regions for vertical-cavity surface emitting lasers of the 1.3 μm spectral range are studied. Photoluminescence and X-ray diffraction studies of the fabricated heterostructures are carried out. It was shown that a change in the ratio of the quantum well thickness and the barrier layer thickness of the superlattice allows one to controllably shift the position of the photoluminescence peak and to provide the heterostructure parameters necessary to achieve lasing at a wavelength of 1.3 μm, while the photoluminescence efficiency remains practically unchanged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.